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How to evaluate RS

�Evaluation of recommender systems (RS)

�Various kinds of accuracy (correctness) metrics

�Evaluate system’s predicting ability or accuracy of 

recommendation list?

�Correct data is given by n-point scale or binary 

(unary) scale?

�Incorporating the novelty and serendipity

�Whether unknown items are recommended?

�Recommendation gives users surprise?

3
Need to summarize the existing evaluation metrics
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Objective of this slide

�Cover almost all the existing offline 

evaluation metrics of RS (Not only accuracy 

metrics but also discovery metrics)

�Categorize them from the evaluation goal

�Make the explanation easy and simple (Do 

not insist readers to consult other textbooks 

or papers)

4
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Overview of Offline Evaluation

for Recommender Systems
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Overview of offline evaluation

�Online vs. offline

�Characteristics of dataset to be considered

�Dataset and its separation for offline 

experiment

6
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Online vs. Offline evaluation

7
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Outline of online and offline

�Online evaluation

�Also called “online experiment” or “live user 

experiment”

�Let users use the RS and examine their 

performance to the tasks

�Offline evaluation

�Also called “offline experiment” or “offline 

analysis”

�Collect users’ ratings to items in advance. 

Some of the ratings are for training the RS and 

others are for evaluating it.
8

[ Herlocker 04, Gunawardana 09 ]
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Outline of online and offline

9

1. Item A

2. Item B

3. Item C

Recommendation listDataset for 

recommendation

Online experiment

Evaluate

- Item A

- Item B

- Item A

- Item B

Rating

.

.

.

Dataset for 

recommendation

Correct data

1. Item A

2. Item B
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Recommendation list
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Overview: Online vs. Offline

10

Overall 

evaluation

Reprodu

cibility

Measurement 

consistency

Preparation 

cost

Online Good Bad Bad Bad

Offline Bad Good Good Good

Exten

sibility

Time 

sensitivity

Further 

analysis

Stabililty Scalability

Online Good Good Good Bad Bad

Offline Bad Bad Bad Good Good
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Characteristics of evaluation

�Overall evaluation
�Whether the method can directly evaluate the entire 

system.
�Online evaluation can evaluate it by directly asking to users.

�Offline evaluation cannot evaluate it because it has only the 
information about the user’s evaluation to items.

�Reproducibility
�Whether other researchers can reproduce the same 

setting of experiment.
� It is easy in offline evaluation because they usually use the 

same dataset (open dataset)

� It is difficult in online evaluation because they give more 
complex instructions to users and measure the real-time 
behaviors. 11
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Characteristics of evaluation

�Measurement consistency
�Whether the meaning of metrics are commonly 

recognized among researchers.
� It is highly consistent in offline evaluation because they 

use the same dataset and the user’s task is simple.

� It is low consistent in online evaluation because there is a 
variety in users’ tasks.

� Preparation cost
�How long the experimenter takes time, how much 

they take efforts for the preparation.
�There is no preparation cost in offline evaluation when 

they use the open dataset.

�Preparation cost is high in online evaluation because they 
set details of users’ tasks, questionnaires, metrics.

12
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Characteristics of evaluation

�Extensibility
�Whether they can add new evaluation metrics.

� It is difficult to add metrics (beyond-accuracy metrics) in 
offline evaluation because the dataset is usually fixed.

� It is easy to add new metrics in online evaluation because 
they can ask any questions to users.

�Time-sensitivity
�Whether they can evaluate the system’s performance 

with time (at any time)
� It is difficult to analyze with time passed in offline evaluation 

because they cannot run the system in real-time.

� It is easy to analyze with time passed in online evaluation 
because they can measure users’ real-time behaviors.

13
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Characteristics of evaluation

�Further analysis

�Whether experimenters can analyze deeply the 

results considering the users’ internal status*.

�It is difficult to analyze deeply in offline evaluation 

because they cannot ask questions about users’ 

internal status.

�It is easy to analyze deeply in online evaluation 

because they ask any questions about users’ internal 

status.

14

* If the experimenter asked users about their internal status,

they can apply deep analysis method like path analysis or structural 

equation modeling. [ Bollen 10, Ekstrand 14] 
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Characteristics of evaluation

�Stability

�Whether the user’s evaluation is stable among 

different timing to ask.

�It is relatively stable* in offline evaluation because 

the questionnaire is simple.

�It is not stable in online evaluation because users 

answer questionnaires after using the system (in 

different contexts).

15

* Even in offline evaluation, users’ ratings to items are not stable.

Users may give different rating value to the same item if the timing

of the questionnaire is different. [ Hill 95, Cosley 03, Amatriain 09]
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Characteristics of evaluation

�Scalability

�Whether the experimenter conducts an 

experiment with many users and items.

�It is relatively easy to collect many users and items in 

offline evaluation because the task is simple.

�It is difficult to collect many users and items in online 

evaluation because the task is complex (Users have 

to use the system in different contexts).

16

(C) 2014 Yoshinori Hijikata



Characteristics of dataset to be 

considered

17
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Characteristics of dataset

�Explicit or implicit
�It is more reliable if the system directly elicits the 

user’s interest or preference from the user.

�Scaling
�The degree of scale granularity. (eg. unary, binary, 

3-point scale, 5-point scale, or more)

�Rating bias
�Users’ tendency to rate items toward highly or low.

�Generally, higher bias in ratings.

�Timestamp
�Whether each rating has timestamp?

18

[ Kamishima 07]

(Usually,  Likert scale)
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Characteristics of dataset

�Multi-criteria ratings

�Single rating criterion or several criteria to item.

�e.g. food, decor, service for restaurant review

�Data size

�How large about the number of users and items?

�Density

�How sparse the rating matrix is? 

�Data increment

�How frequently the new data is input?
19

[ Admavicius 07]
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Dataset and its separation for offline 

evaluation

20
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Dataset for offline evaluation

21

item

user

��
5 1 0 ⋯ 0

0 4 5 ⋯ 0

0 6 2 ⋯ 2

⋮ ⋮ ⋮ ⋱ ⋮

6 0 0 ⋯ 7

�� ������

��

additional

information

Timestamp

2014/06/27 09:14:23

Tag

school, comedy

��

��

�Consist of user’s rating value to item

�e.g. 7-point scale. 0: no rating

�Some dataset has timestamp or tag
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Dataset for offline evaluation

�Feature data for content-based filtering

�RS with content-based filtering needs the 

feature data of items

22

0.2 0.7 0.1 0.0 0.2 ⋯ 0.2
item

feature

0.4 0.1 0.6 0.5 0.3 ⋯ 0.9

0.0 0.5 0.3 0.5 1.0 ⋯ 0.3
⋮

��
��
��

�� �� ���� �� ��

[ Adomavidius 05, Lops 11]
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Cross validation

�Cross validation (k-fold cross validation)
�Dataset are separated to K groups.

�One is for test set and the others are for training set

�Replace the group for test set

23
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[ Stone 74 ]
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Cross validation

24
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�Validation (development, tuning) set

�Some algorithms need to be set hyper parameters

�Prepare one data group for testing the parameters
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Cross validation

�Cross validation with validation set

25
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Data separation for timestamp data

�Data separation for time stamp data

26

(1) Fixed separation time for all users

time

Learning set Learning set

[ Gunawardana 09 ]
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Data separation for timestamp data

27

(2) Separated for each user

(2-1) The former N data for learning set, the latter data for test set 

time

N=3

(2-2) The former X% data for learning set, the latter data for test set 

time

X=80
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Data separation for timestamp data

28

(3) Random separation

time

*In random separation, k-fold cross validation can be applied to.
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Accuracy Metrics

29
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Introduction: Accuracy metrics 

�Accuracy metrics

�Consider whether the item is fit for the user’s 

interest or preference

�Do not care whether the recommended item is 

useful for the user

�Good recommendation should have high 

accuracy 

�The user satisfaction is strongly influenced by 

the accuracy

30

[Sinha 01]

[ Hijikata 12, Ekstrand14]

*My definition is different from the accuracy (Rand accuracy, Rand index) 

in machine learning area.
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Types of accuracy metrics

�Accuracy metrics

�Accuracy of estimated rating

�Accuracy of estimated ranking

�Accuracy of list relevance

�Accuracy based on ranking position

31
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Overviews of accuracy metrics

�Accuracy of estimated rating

�RS estimates the user’s rating value. 

�Measure the difference between estimated 

value and correct value (given by user)

�Accuracy of estimated ranking

�RS orders the item to be shown to user.

�Measure the correctness of the order by 

comparing with the correct order (given by user)

32
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Overviews of accuracy metrics

�Accuracy of list relevance

�RS produces a list of items as recommendation.

�Measure the relevance of each items to the 

user’s preference

�Accuracy based on ranking position

�Highly relevant item should be at high rank, 

lower one should be at low rank.

�Measure the list relevance considering its 

ranking position

33
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Accuracy metrics and categorization

34

Accuracy metric

Accuracy of 

estimated  rating

Accuracy of 

estimated raking

Accuracy of list 

relevance

Accuracy based on 

ranking position

- Precision, Recall

- Average precision

- Interpolated precision

- ROC curve, AUC

- Hit-rate

- MAE, MSE, RMSE

- Spearman’s rank c.c.

- Kendall’s rank c.c.

- NDMP

- MMR (Mean reciprocal rank)

- ARHR (Average reciprocal hit rank)

- nDCG

- Half-life Utility Metric

- RBP (Rank biased precision)

- ERR (Expected reciprocal rank)
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Accuracy of estimated rating

35
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MAE, MSE, RMSE

�MAE (Mean absolute error)

36
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MAE, MSE, RMSE

37

�MSE (Mean square error)

(For evaluating all test set data)

�� =
∑ �	(
) − �	(
) �
�∈�

�

Make it as same 

unit as MAE

�RMSE (Root mean square error)

��� = =
∑ �	(
) − �	(
) �
�∈�

�

Consider the large

difference more

serious

� : Item set

: prediction

: correct rating

�
�
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MAE, MSE, RMSE

�Normalization

38

���	
������� =
���

�	
� − �	�

��������	
�� =

��

���� − ����

��������	
��� =

���

���� − ����

�	
�

�	�

: Maximized value

: Minimized value

� Pros and Cons

� [Pros] Can evaluate all the items in the test set

� [Cons] Cannot distinguish differences in lower  rating and 

medium rating.

(e.g. rating 1-2 and rating 2-3 (neutral))

� [Cons] Users cannot perceived the small difference [Lam 06].
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Accuracy of estimated ranking

39
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Accuracy of estimated ranking

40

user u [  3   4   2   0   4   7   6   3   1   5   2   4   2]

1    2     3     4    5     6     7    8     9   10   11   12   13

item iGround truth

System prediction

user u [  3   4   2   0   2.6 5.3 5.6 4.5 5.5 6.2 3.5 4.1 1.5]

1    2     3     4    5       6      7      8      9     10    11    12     13

item i

1. item 9

2. item 12

3. item 13

4. item 8

5. item 5

Ranking from the head to the tail

6. item 12

7. item 10

8. item 7

9. item 6

Evaluate this ranking

User ranking

1. item 10

2. item 7

3. item 9

4. item 6

5. item 8

6. item 12

7. item 11

8. item 5

9. item 13

System ranking
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Spearman’s ranking correlation

�Spearman’s rank correlation

�Non parametric

�Suited for measuring ranking validity

41

�Pearson correlation

�Parametric: Suppose bivariate normal 

distribution between variables
user’s rating

[  1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0  9.0  10.0  ]

system rating

[  1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0  9.0  10.0  ]

Peason r

� = 1.0

[  1.0  1.5  2.0  2.5  3.0  8.0  8.5  9.0  9.5  10.0  ]
Rankings are 

the same.
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Spearman’s ranking correlation

�Calculation method of Spearman r

42

Pearson r

���
��� =
∑ �� − �̅ �� − ��

���

∑ �� − �̅ �
��� ∑ �� − �� �

���

Use rank instead of using observed value

��� = �(� + 1)/2 ��� = �(� + 1)(2� + 1)/6 �̅ = � + 1 /2

� = 1 −
6

� �� − 1
�(�� − ��)

�



���

�
�

: Ranks of item i output by RS

: Ranks of item i offered by user

Spearman r
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Kendall’s rank correlation coefficient

�Kendall’s rank correlation

�Check two users’ coincidence about magnitude 

relationship between two items 

43

Item set
for all item pairs (a, b)

�(� − 1)/2

User s and t give ranking to items

IF ����� � < ����� 	 AND ����� � < ����� 	 THEN 
 ← 
 + 1

IF ����� � > ����� 	 AND ����� � > ����� 	 THEN 
 ← 
 + 1

OHTERWISE � ← � + 1

�

� =
� − �

1
2
�(� − 1)

=
2�

1
2
�(� − 1)

− 1
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NDPM

�NDPM (Normalized distance-based performance measure)

44

Rank Item

1 Item A

2 Item B

3 Item C

4 Item D

5 Item E

���� =
2�� + ��

2��

�� : The number of contradictory preference

relations which happen when the system

says item 1 will be preferred to item 2,

but the user ranking is opposite

�� : The number of compatible preference 

relations which happen when item 1

will be preferred to item 2 in the

system’s ranking, the user sees them

equal

�� : The total number of preferred relations

(the same order) of item pairs between

the system’s and the user’s ranking

Rank Item

1 Item A

2 Item B

2 Item C

4 Item E

5 Item D

System’s ranking User’s ranking

��

��

[Yao 95]
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Spearman, Kendall, NDMP

�Pros and Cons

�[Pros] Evaluate the rankings for both the 

recommendation list and the whole test set

�[Cons] Difficult to obtain the complete ranking of 

the active user

�[Cons] NDPM reduces the penalty if the system 

gives different ranks to items with the same 

ranks in user evaluation (This case will always 

happen in RS)

45
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Accuracy of list relevance

46
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Accuracy of list relevance

�Probability Rank Principle (PRP)

�The relevance of a document to a query is 

independent of the relevance of other 

documents the user has seen before.

�The utility will be maximized when the system 

orders documents according to their relevance 

to the query.

�Most IR and RS follow this principle, and the 

result will be presented to the user in a list.

47

[ Robertson 97 ]
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Accuracy of list relevance

�Precision, recall and F-value

48

[  5  1  0  3  6  7  1  2  1  7  ]�
user’s rating

[  5  1  0  1  7  5 1  6  5  3  ]�

system’s prediction

[  5  1   - U   F  F U  U U F ]�
user’s rating

[  5  1  U  U F F U F F U ]�
system’s prediction

Rank Item

1 Item 5

2 Item 8

3 Item 6

4 Item 9

F

U

F

U

1   2    3   4   5   6    7   8    9  10

1   2    3   4   5   6    7   8    9  10

1   2    3    4     5    6    7    8    9   10

1   2    3    4     5    6    7    8    9   10

F

U

F

U

User’s rating

Precision  2/4=50%

Recall 2/3=67%
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Precision, Recall, F-measure

�Precision

49

���� ���� =
!� ∩ ℶ"�

ℶ"�

�Recall

���� ���� =
!� ∩ ℶ"�

ℶ"�

� F-measure

������� =
2 · �	�
����� · ��
����

�	�
����� + ��
����

!� : User i’s favorite item set in the test set "� : System’s recommendation list

recall

precision

0.0   0.1   0.2   0.3  ...    0.8   0.9   1.0

1.0

0.5

0.0

� Precision recall curve

� E-measure

������ = 1 −
1 + 	�

	�
������� +

1

���������
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Average precision, MAP

�Average precision

50

�MAP (Mean average precision)

: The number of matched

items in the list

��� =
1

	� ��	
	

	 : The number of recommendation list

(The number of test queries in IR)

�� =
1

� � �� # · ���@#
�����

�

�

	��(	)

: The list length

: A function returning

matched or not

[Buckley 05]
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Interpolated Precision

� Interpolated Precision

51

Rank 1 2 3 4 5 6 7 8 9 10

Fit? Y N Y N Y Y N N N N

Precision 1.0 0.5 0.67 0.5 0.6 0.67 0.57 0.50 0.44 0.40

Recall 0.25 0.25 0.5 0.5 0.75 1.0 1.0 1.0 1.0 1.0

Recall - 0.25 0.25 - 1.0

Interpolated 

Precision

1.0 0.67
Find the recall                  at that time.�������

Find the highest precision                    .

Consider                      as the precision at the recall smaller than 

����������

���������� �������

1. 

2. 

3. 

4. Repeat 1.

[ Manning 08 ]
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n-points Interpolated Precision

�n-points interpolated average precision

52

Usually N=11 (recall 0.0  0.1  0.2  ...  0.9  1.0)

Set N-points recall.

��&� =
1

�� &�'���� ����
�
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ROC curve

�ROC curve (receiver operating characteristic)

53

P-value F/N

0.95 L

0.85 L

0.80 D

0.75 L

0.70 L

0.65 L

0.55 D

0.45 L

0.30 L

0.30 L

0.30 L

0.30 D

0.18 D

0.15 L

0.05 D

Like: The user prefers the item in the ground truth data

Dislike: The user dislikes the item in the ground truth data

positive: The system determines the item as favorite one

negative: The system determines the item as un-favorite one

Like Dislike

positive TP FP

negative FN TN

user

system

��� =
��

�� + 	


	�� =
	�

	� + �


(1)

(2)

(1)

(2)

(5)

(5)

(15)

(14)

(14) (15)

�����������		(����)

=
�� + ��

�� + �� + �� + ��
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GROC curve and CROC curve

�How to obtain ROC curve from several 

users’ logs

�Global ROC curve (GROC curve)

�Calculate the prediction score to all the pairs of user 

and item in the test set

�Order the pairs in descending order and make a list

�Draw ROC curve

�Customer ROC curve (CROC curve)

�Create recommendation list in each user

�Calculate TPR and FPR in each user

�Take the above average and draw ROC curve 54

[ Schein 02]

[ Sarwar 00]
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Hit-rate

�Hit-rate

�Target unary data (purchase logs, viewing logs)

55

[Deshpande 04]





















1001

0010

0110

1001

Ground truth

learning

data

test

data

1. Item 4

2. Item 3
Exist?

1. Item 2

2. Item 4 Exist?

user

item

YES

NO

...

...

1.  Search non-zero entry

2.  Check whether the item

included in the list

3.  Calculate hit-rate

��� − ���� = �������

�

������� : items included

in the rec. list

� : The number of users

rec. list

rec. list

(C) 2014 Yoshinori Hijikata



Accuracy based on ranking position

56
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Accuracy based on ranking position

�Accuracy based on ranking position

�Evaluate ranking list considering is relevant item’s 

ranking position

�Position-based model

�MRR, APHR, DCG, nDCG, Half-life Utility metric, RBP

�Cascade-based model

�Consider the user’s stop browsing with their satisfaction

�ERR
57

� � = 1 �, � = 
'�� · ��

� � �
����
��

: item : Ranking position : Event that the user watched the item

: Item i’s attractiveness to the user

: Provability that the user checked until ranking 

[ Craswell 08, Richardson 07 ]

[ Chapelle 09 ]

[ Chapelle 09 ]
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Mean Reciprocal Rank (MRR)

�Mean Reciprocal Rank (MRR)

�Take average of reciprocal of ranks

58

�(( =
1

����

����
�

�

���

����

�

	���

: The set of items preferred by the user

: The length of the recommendation list

: Whether the item is preferred by the user (1 or 0)
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ARHR

�ARHR (Average Reciprocal Hit-Rank)

59

[Deshpande 04]

�Target unary data (purchase logs, viewing logs)
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���� =
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: Non-zero entry included in the

user’s rec. list

: Item i’s ranking position
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CG, DCG, nDCG

�Cumulative gain (CG)

60

Rank Rel

1 0.95

2 0.23

3 0.85

4 0.90

5 0.88

6 0.67

7 0.56

8 0.45

9 0.35

10 0.92

�)� = � ���
�

���

� : List length

�Discounted cumulative gain (DCG)

��)� = ��� +� ���
��*�(�)

�

���

��)� = � 2���� − 1

��*�(� + 1)

�

���

��� : User’s actual rating

[Jarvelin 02]

(C) 2014 Yoshinori Hijikata



CG, DCG, nDCG

�Normalized DCG (nDCG)

61

Rank Rel

1 0.95

2 0.92

3 0.90

4 0.88

5 0.85

6 0.67

7 0.56

8 0.45

9 0.35

10 0.23

Ideal order

&��)� = ��� +� ���
��*�(�)

�

���

for ideal order

&��)� = � 2���� − 1

��*�(� + 1)

�

���

���)� =
��)�

&��)�

For considering variety

of recommendation length

[Jarvelin 02]
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Half-life utility metric

�Half-life utility metric

62

(� = � max	(��,� − ��
��', 0)
2(���)/(���)

�

��,� : user u’s actual rating

to item ranked at j 

������� : default rating value

(usually average)

, : half life parameter

Rank Item

1 Item A

2 Item B

3 Item C

4 Item D

5 Item E
Rank

decaying

ratio

1  2  3  4  5  ...  

[Breese 98]
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RBP

�RBP (Rank biased prediction)

�But, incorporate user models (when user stops 

browsing the recommendation list)

63

(�� = (1 − �)�*�



���

· ����

gi: the degree of relevance of the item at rank i to the user’s preference

p: parameter that models how persistent a user is while looking through

the ranked list. (Usually estimated from click logs)

[Moffat 08]

View first item View next item Finish searching
�

�

1 − �
1 − �

(C) 2014 Yoshinori Hijikata



Cascade user model

�Cascade user model

�consider the relevance of items existing in the 

higher rank

�come from the idea that once the user is satisfied 

with an item, he/she terminates the search and items 

below this result are not examined and clicked.

64


 ����	��	����	� =�(1 − ��)��
��	

�
	

Ri: Probability the user is satisfied and stops browsing ranking list.

Values can be set as a function reflected from the relevance

to the user preference.

[Chapelle 09]
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ERR

�ERR (Expected reciprocal rank)
�One of cascade based metric

�Take summation of the probability that the user 
stops examining the ranking in the r-th position.

�The above probability is influenced by the upper 
ranking.

65

��� = � � 
(����	�����	��	��������	�)
�

�
	

 � =
1

� or  � =
1

��!�(� + 1)

��� = � � �(1 − ��)
��	

�
	

��
�

�
	

�� =
2� − 1

2����

g: relevance grade to the user preference

gmax: The maximum grade in the prefixed scale. (e.g. 5 in five scale (1-5))

[Chapelle 09]
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Accuracy of list relevance and 

Accuracy based on ranking position

�Pros and Cons

�[Pros] Evaluate the ranking list (Actually, users 

receive recommendation in a ranking list)

�[Pros] Recent metrics consider the ranking 

position (Normal users do not browse the list to 

the tail)

� [Cons] Do not evaluate the recommendation 

timing / context  (when, where, how)

66

[ Olmo 08 ]
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Discovery-oriented Metrics

67
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Discovery-oriented metrics

�Why beyond accuracy

�We should consider more perspectives rather 

than accuracy

�Problems of accuracy indices

�Do not consider the system’s utility

�Users get tired of recommendation if it 

recommends similar items to the past.

�User has already made a decision of purchase 

for known items.

68
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Usefulness

�Usefulness: Whether the recommendation 

results provide utility to users.

�Utility metrics except discovery-oriented metrics

�Measuring the system’s utility

• Coverage, Learning rate, Confidence, Trustworthiness

�Discovery-oriented metrics

�Measuring whether the recommendation is new to 

the user

• Serendipity metrics

• Novelty metrics

• Diversity metrics
69

[ Herlocker 04 ]

(C) 2014 Yoshinori Hijikata



Utility metrics (except discovery-

oriented metrics)

70
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Coverage

�Coverage

�Measure how many items the system can make 

a prediction.

�Collaborative filtering cannot make a prediction 

to item which has no ratings from users.

�Content-based filtering cannot make a prediction 

to item which lack some feature values.

71

��-�
* =
��

��

�� ��: Item set : Item set the system can make

a prediction

Prediction coverage

[Sarwar 98]
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Coverage

72

�Coverage

�Catalogue coverage

�Consider the types of items during a fixed time length

�
'
��*�	��-�
* =
⋃ ℶ"����⋯�

�
: The number of times of the recommendation

: j-th time recommendation list : Item set

"
# $

[Ge 10]

�User coverage [Kawamae 10]

��-�
* =
/�
0�

0 � ��

��
: User set

: User set the system can

recommend at least one item
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Learning rate

�Learning rate

�How fast the RS provides a well-adapted 

recommendation after changing the user’s 

preference has changed

�Related to cold-start problem

�User satisfaction decrease when the system’s does 

not provide recommendation soon 

�Time after the change of preference 

�Keep measuring the accuracy since the user has 

started the RS 

73

[ Koychev 00 ]

[ Schein 02 ]

[ Rashid 02 ]

[ Jones 07 ]
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Confidence

�Confidence

�How confident that the system thinks for the 

recommendation

�Calculated from the number of users or items which 

are used for creating the recommendation

�Calculated from similarity of neighborhood in CF

74

[ Sinha 01, Herlocker 04]

[ Bell 07 ]
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Trustworthiness

�User’s trust to the RS

�Should show the RS’s ability to predict the 

user’s preference and interest

�Difficult to obtain it w/o showing users’ well-

known items

�Users do not continue to use the RS unless 

they do not trust the system

�Explanation to rec. results increase trust

�Obtained by direct questionnaire to users in 

online evaluation

�Estimated from user’s usage frequency 75

[ Sinha 01]

[ Cramer 08 ]

[ Tintarev 07 ]

[ Bonhard 07, Cramer 08 ]

[ O’Donovan 05 ]
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Metrics for discovery

76
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Discovery

�Discovery: General notion regarding the 

system’s ability to provide new and various 

types of items to the user

�Serendipity: Whether the recommendation 

gives the surprise to the user. (The user cannot 

search the item by oneself.)

�Novelty: Whether the recommended items are 

unknown to the user.

�Diversity: Whether the system can recommend 

various types of items to users. 
77
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Discovery-oriented metrics

�Viewpoints

�Evaluation target: List, user set, item set, item 

pair?

�Required data (information): only rating matrix 

(user x item) , ontology (item category), other 

RS, other dataset (regarding the novelty, 

serendipity)

78
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Discovery-oriented metrics: Diversity

79

Metrics Type of 

Discover

y

Target Other Info. Inventor

Aggregate diversity Diversity User set None Adomavicius, IEEE 2012

Inter-user diversity Diversity User set None Zhou, NAS 2010

List personalization 

metric

Diversity List None Zhou, NAS 2010

Gini coefficient Diversity Item set None Fleder, EC 2007

Temporal diversity Diversity List pair None Lathia, SIGIR 2010

Intra-list similarity Diversity List Ontology Ziegler, WWW 2005

Subtopic retrieval Diversity List Ontology Zhai, SIGIR 2003

MMR Diversity List Ontology Carbonell, SIGIR 1998

-nDCG Diversity List Ontology Clarke, SIGIR 2008�
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Discovery-oriented metrics: Novelty 

and Serendipity

80

Metrics Type of 

Discovery

Targ

et

Other Info. Inventor

Discovery ratio Novelty List Acquaintance Hijikata, IUI 2009

Precision of novelty Novelty List Acquaintance Hijikata, IUI 2009

Item novelty Novelty Item Ontology Zhang, RecSys 2008

Temporal novelty Novelty List None Lathia, SIGIR 2010

Novelty based on HLU Novelty List None Shani, RecSys 2008

Long tail metric Novelty List None Celma, RecSys 2008

Generalized novelty 

model

Novelty List None/Ontology Vargas, RecSys 2011

Unexpectedness Serendipity List Other system Murakami, LNCS 2008

Entropy-based 

diversity

Serendipity List Other systems Bellogin, HetRec 2010

Unserendipity Serendipity List Ontology Zhang, WSDM 2012

HLU of serendipity Serendipity List Serendipity rating Murakami, JSAI 2009
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Diversity metrics

81
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Diversity: Aggregate diversity

�Aggregate diversity

�Aggregate the types of items recommended to 

all users

�High value to this metric indicates that the 

system provides different items to users

82

�**��� = 1 ℶ"�

�∈�

: User set

: Recommendation list for User u

%
#�

[Adomavicius 2012]
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Diversity: Inter-user diversity

� Inter-user diversity

�How the system provides different 

recommendation list among users

83

��,� = 1 −
ℶ"� ∩ ℶ"�

� � = ℶ"� = ℶ"�

Inter-user diversity (IUD)

&0� =
1

�|�|

� ��,�

�,�∈�

: User set

: Recommendation list for User u

%

#�

Degree of personalization for the system 

[Zhou 10]

&|�| : Num. of two pairs in U
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Diversity: List personalization metric

�List personalization metric

84

Degree of personalization for the list 

�� =
0�

0

Probability of item b selected by a user

: The number of users who selected item b

Self entropy of item b

&� = ��*�

0
0�

Degree of personalization of the list

�� "� =

∑ ��* 0
0�

��∈ℶ��

ℶ"�

[Zhou 10]

��

(C) 2014 Yoshinori Hijikata



Diversity: Gini coefficient

�Gini coefficient

�x-axis: x% of the population ordered by income

�y-axis: Total income of the population 

cumulatively earned by x population

85

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

population ordered by income

Total income of x population

A

B

� = �/(� + �)

When applying to recommendation results

x-axis: x% of the items ordered by the

frequency in the lists

y-axis: Total frequency of x% of items 

in the list 

Applied for measuring the diversity

to e-commerce site of music [Fleder 07, Kawamae 10]
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Diversity: Temporal diversity

�Temporal diversity

�Measure the system outputs different items when 

the time is different (t1 and t2)

86

��- 	� "�, "�,� =
� ∈ "�|�! ∈ "�

� � = ℶ�� = ℶ��

[Lathia 10]
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Diversity: Intra-list similarity

�Diversity according to content

�Measure the diversity of recommendation list

�Calculated using the similarity of two items

�Feature vectors or categories are usually used.

87

��-� �'� = � 1

 �	��
��'�(�,	)�∈ℶ��,	∈ℶ��

� Intra-list similarity (Diversity)

&"2 "� =
∑ ∑  �	��
��'�(3���∈��	��!��

, 3�)��∈��

|��|
��

[Ziegler 05]

[Ziegler 05]
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Diversity: Subtopic retrieval metric

�Subtopic retrieval metric

Measure how many topics (categories) are 

covered by recommendation list among the total 

number of topics

88

2��"
�� = ⋃  �3'����  � |#
���

�
: The length of the recommendation list

: Item in the recommendation list

: The total number of topics

'
��
�

[Zhai 03]
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Diversity: MMR

�MMR (Maximal marginal relevance) of the 

list

�MMR is originally the item selection method for 

selecting a document to the search result

�This idea can be used for evaluating the search 

result list (recommendation list)

89

((����� = � )���(��) − 1 − ) �����∈�������(�� ,�)
��∈�

: Recommendation list

: Item in the list

: Recommendation list until jth rank

L

��
#�	

: Whether the user likes 

the item
���

[Carbonell 98]
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Diversity:    - nDCG

� Diversity (    -nDCG )

�Originally developed in IR field

�Should reduce redundancy and cover wide 

categories (‘nugget’ in original)

�Should cover wide categories in recommendation

90

�

��)� = ��� +� ���
��*�(�)

�

���

��)� = � 2���� − 1

��*�(� + 1)

�

���

���)� =
��)�

&��)�

[Clarke 08]
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Diversity:    - nDCG

�Diversity (    -nDCG)

91

�

���for calculating 

��� = �4(�� , �)(1 − ,)��,���
	

���

i: i-th category (nugget)

dk: item (document) ranked in k-th position)

J(dk,i): whether dk includes nugget i ( 0 or 1 )

ri,k-1: the number of d including nugget i
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Novelty metrics

92
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Novelty metrics

�How to measure novelty

�Ask user about their acquaintance to a specific 

item

�Calculate the general popularity or similarity 

among items

93

[ Hijikata 09, Celma 08 ]

[ Celma 08, Shani 08, Meyer 12 ]
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Input data set (for novelty evaluation)

94

�Rating matrix
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r
u
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−

−
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1110

01

011

r
u

i

Learning

set

Test

set

[Hijikata 09]
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Novelty: Discovery ratio

�Discovery ratio

�How many unknown items are recommended in 

the list?

95

�� ��-�� =
�� ∩ ℶ"�

ℶ"�

�� : User i’s unknown item set in the test set "� : System’s recommendation list

[Hijikata 09]
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Novelty: Precision of novelty

�Precision of Novelty

�Whether the item is unknown to the user and 

the user will like the item.

96

���� ��� ��-�'� =
�� ∩ ℶ"�

ℶ"�

(�
�� ��-�'� =
�� ∩ ℶ"�

��

�� : User i’s unknown and favorite item set

in the test set
"� : System’s recommendation list

[Hijikata 09]
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Novelty: Item novelty

� Item novelty

�Measure the novelty of recommended item

�By using the intra-list diversity

97

[Zhang 08]

��-� �	 � = � ��- 5" − ��- 5" − {�}

=
1

� − 1
� �(�, 6)
�∈$�

[Ziegler 05]

ℶ� = � �(�, 	) : distance function between items


��	() : diversity function of the list
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Novelty: Temporal novelty

98

�Temporal novelty

�Measure whether the system outputs different 

items from past recommended items

��- 	� "� =
� ∈ "�|�! ∈ 2�
� 

ℶ"�

[Lathia 10]

2�
� = 1 ℶ"�

���

���
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Novelty: Novelty based on HLU

99

�Novelty based on Half-life utility

(� = � max	(��,� − ��
��', 0)
2(���)/(���)

�

��,� : user u’s actual rating

to item ranked at j 

������� : default rating value

(usually average)

, : half life parameter

[Breese, UAI’98]

Half-life utility metric

[ Shani 08 ]

Introducing the general popularity of items

� � = ��*�

�
��

�7"0� = ��(�)max	(���,� − �, 0)
2(���)/(���)

�

�

 �: Number of users : Num. of users selecting item i
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Novelty: Metrics based on long tail

�Metrics based on long tail

�Dividing the item to three categories according 

to its popularity: HEAD, MID TAIL

�Extract item     and     in top N recommendation. 

�Evaluate the ability to recommend novel items 

by the following evaluation matrix. 

100

HEAD MID TAIL

HEAD 45.32% 54.68% 0.00%

MID 5.43% 71.75% 22.82%

TAIL 0.24% 17.16% 82.60%


� 
�


� 
�

If HEAD->HEAD is large, novelty is low.

[ Celma 08 ]

Values are reprinted

from [Celma 08]
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Novelty: General model

�General model for novelty

101

��- " 8 = �� � �9��  �,�, " ��-(�|8)
�∈�

browsing model item novelty model

" 8: Recommendation list : Definition of novelty

�Item novelty model

�Popularity based item novelty

��- � 8 = −��*��( �|�,8)
�Distance based item novelty

��- � 8 = � � 6 �9�� ,8, � �(�, 6)
�∈%

: Distance function�(�, "): The user’s previously selected items*

[Vargas 11]

: How frequently the item 

is selected by people

*
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Novelty: General model

102

�Browsing model

� �9��  �,�, " = �( �|�,�, ")�(��|�,�)
The user does not select unseen items or disliked items

In simple, � ���� �, �,� = ��

�  � �� ,�, ") = : �(���'|�,�, ")
���

���

The user does not see item ik if he stops browsing until k-1 rank

If using the idea of ERR � ��� ��,�, �) = � (1 − � ��� �� ,� )
���

���

�(���|�, �) : Calculated from the correct data
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Serendipity metrics

103
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Serendipity metrics

104

�How to measure serendipity

�Ask user about their surprise to the 

recommendation of a specific item

�Calculate the expectation difficulty by using 

other systems

[ Murakami 09 ]

[ Murakami 08, Ge 10, Bellogin 10 ]
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Serendipity: Unexpectedness

�Unexpectedness

105

�;�;� =
1

ℶ"�

� max	(�  � − ���	  � , 0) · ��( �)
ℶ��

���

Target RS

Premitive RS

dataset
predicted

rating

predicted

rating

compare

unexpectedness

: Recommendation list to be evaluated: Item at the i-th rank

: The predicted rating by the primitive system

: The predicted rating by the target system

: User’s rating to item si

#���
���(��) 
(��)

����(��)

[Murakami 08]
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Serendipity: Unexpectedness

�Unexpectedness

106

[Ge 10, Adamopoulos 13]

0��;� = (2 ��
2(�� =

0��;� ∩ 02�<0"
�

�� : Item set output by RS

��: Item set output by primitive

System [Ge 10]

������ : Useful Item set 

��: Item set similar to previously

seen items [Adamopoulus 10]
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Serendipity: Entropy-based diversity

�Entropy-based diversity

�Checks whether an item in the recommendation 

list of one RS is also recommended by other RS.

107

��-
,� = − � ��,� · ��*��,�

�∈ℶ��,	∩&	

��,� =
∑ =(
,�, �)
∈'

�

: RS set : Target system to evaluate

: Recommendation list provided by system a for user u

: Relevant item to user u

+ �
#�,�
��

[Bellogin 10]

: 1 if and 0 otherwise� ∈ ℶ#�,� ∩ ��,
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Serendipity: Unserendipity metric

�Unserendipity

�Calculate item’s unserendipity by measuring the 

similarity to items in the user’s history

108

[Zhang 12]

0� �� = � 1

0 7�

� �  �	(�, ℎ)
ℶ"�

�∈ℶ�	(∈)	�∈�

: User set% : User history-� : Recommendation list#�
: Similarity between items���()
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Input data set (for serendipity 

evaluation)

�Serendipity

�Whether the item is surprisingly found and the 

user will like the item.

�It is difficult to define formally in formula.

�Surprise is difficult to be detected or measured. 

109
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Serendipity: Half-life utility of serendipity

�Half-life utility of serendipity

110

7"!�������� * =
(���

(	
�

����
= � 1

2(���)(���)

�

�	�,��∈
∩���

��� = � 1

2(���)(���)

�

�	�,��∈���

: The number of items in the dataset

: The user’s serendipitous items in the dataset

: Top N items in the recommendation results

(
.��
/

[Murakami 09]
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Challenge of improving discovery

�Recommending only novel items decrease 

the user’s satisfaction

�Users generally prefer known items

�Overall evaluation shows that novelty decreases 

the user satisfaction

�Take care when recommending novel items

�Consider user’s experience in RS

�Explain novel item recommendation in advance

�Explain each recommended novel items

111

[ Sinha 01 ]

[ Ekstrand 14 ]
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Conclusion

� Almost all the evaluation metrics for offline test is 

introduced in this survey.

� Accuracy metrics are categorized to accuracy of 

estimated rating, estimated ranking, list relevance, 

and accuracy based on raking positon.

�Most of the accuracy metrics are presented in well-

defined formula

� Discovery-oriented metrics are categorized to 

evaluating the diversity, novelty and serendipity

�Many challenges exist in discovery-oriented metrics for 

the tradeoff between accuracy and discovery.
112
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